Индивидуальный предприниматель

Чалиев Александр Александрович

персональный сайт кандидата наук

Нижний Новгород, ул. Б.Печерская, 15
+7 (904) 395-42-31
ежедневно с 9-00 до 20-00
Оставить онлайн-заявку

Выборочное наблюдение в статистике

Понятие и виды выборочного наблюдения

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают n, а во всей ГС - N. Отношение n/N называется относительный размер или доля выборки.

Качество результатов выборочного наблюдения зависит от репрезентативности выборки, то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

Существует 4 способа случайного отбора в выборку:

  1. Собственно случайный отбор или «метод лото», когда статистическим величинам присваиваются порядковые номера, заносимые на определенные предметы (например, бочонки), которые затем перемешиваются в некоторой емкости (например, в мешке) и выбираются наугад. На практике этот способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.

  2. Механический отбор, согласно которому отбирается каждая (N/n)-я величина генеральной совокупности. Например, если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. Например, если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. Если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Качество выборочных наблюдений зависит и от типа выборки: повторная или бесповторная.
При повторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всех величин генеральной совокупности одинаковая вероятность включения в выборку.
Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ошибки выборки

Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит выборочная средняя величина, обозначаемая Выборочная средняя, а во втором — выборочная доля величин, обозначаемая w. В генеральной совокупности соответственно: генеральная средняя Генеральная средняя и генеральная доля р.

Разности и Wр называются ошибкой выборки, которая делится на ошибку регистрации и ошибку репрезентативности. Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Величина ошибки выборки может быть разной для разных выборок из одной генеральной совокупности, поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки по формулам:

Средняя ошибка повторной выборки - повторная;

Средняя ошибка бесповторной выборки - бесповторная;

где Дв — выборочная дисперсия.

Например, на заводе с численностью работников 1000 чел. проведена 5%-ая случайная бесповторная выборка с целью определения среднего стажа работников. Результаты выборочного наблюдения приведены в первых двух столбцах следующей таблицы:

X, лет
(стаж работы)

f, чел.
(число работников в выборке)

Xи

Xиf

до 1

7

0,5

3,5

38,987

1-2

8

1,5

12,0

14,797

2-3

10

2,5

25,0

1,296

3-4

13

3,5

45,5

5,325

4-5

9

4,5

40,5

24,206

более 5

3

5,5

16,5

20,909

Итого

50

 

143,0

105,520

В 3-м столбце определены середины интервалов X (как полусумма нижней и верхней границ интервала), а в 4-м столбце - произведения XИf для нахождения выборочной средней по формуле средней арифметической взвешенной:

выборочная средняя = 143,0/50 = 2,86 (года).

Рассчитаем выборочную дисперсию взвешенную:
Расчет выборочной дисперсии = 105,520/50 = 2,110.

Теперь найдем среднюю ошибку бесповторной выборки:
расчет средней ошибки бесповторной выборки = 0,200 (лет).

Из формул средних ошибок выборки видно, что ошибка меньше при бесповторной выборке, и, как доказано в теории вероятностей, она возникает с вероятностью 0,683 (то есть если провести 1000 выборок из одной генеральной совокупности, то в 683 из них ошибка не превзойдет средней ошибки выборки). Такая вероятность (0,683) является невысокой, поэтому она мало пригодна для практических расчетов, где нужна более высокая вероятность. Чтобы определить ошибку выборки с более высокой, чем 0,683 вероятностью, рассчитывают предельную ошибку выборки:

предельная ошибка выборки

где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Значения коэффициента доверия t рассчитаны для разных вероятностей и имеются в специальных таблицах (интеграл Лапласа), из которых в статистике широко применяются следующие сочетания:

Вероятность вероятность 0,683 0,866 0,950 0,954 0,988 0,990 0,997 0,999
t 1 1,5 1,96 2 2,5 2,58 3 3,5

Задавшись конкретным уровнем вероятности, выбирают из таблицы соответствующую ей величину t и определяют предельную ошибку выборки по формуле.
При этом чаще всего применяют  = 0,95 и t= 1,96, то есть считают, что с вероятностью 95% предельная ошибка выборки в 1,96 раза больше средней. Такая вероятность (0,95) считается стандартной и применяется по умолчанию в расчетах.

В нашем примере про средний стаж работников, определим предельную ошибку выборки при стандартной 95%-ой вероятности (из таблицы берем t = 1,96 для 95%-ой вероятности): Расчет предельной ошибки выборки = 1,96*0,200 = 0,392 (года).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид

доверительный интервал генеральной средней

а для генеральной доли аналогично:

доверительный интервал генеральной доли.
Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупности, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.

В нашем примере про средний стаж работников, определим доверительный интервал генеральной средней - среднего стажа работников:
2,86 - 0,392 2,86 + 0,392 или 2,468 лет 3,252 лет.
То есть средний стаж работников на всем заводе лежит в интервале от 2,468 года до 3,252 года.


Определение численности выборки

Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулу средней ошибки повторной выборки и формулу средней ошибки бесповторной выборки в формулу предельной ошибки и, решая ее относительно численности выборки, получим следующие формулы:
для повторной выборки n =
для бесповторной выборки n = .

Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов (в приоритетном порядке):

  1. Берется из предыдущих выборочных наблюдений;
  2. Используется правило, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений (правило 6 сигм, а так как , то отсюда );
  3. Используется правило «трех сигм», согласно которому в средней величине укладывается примерно 3 стандартных отклонения (; отсюда выборочная дисперсия через размах вариации).

При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле дисперсии доли соответствует выборочной дисперсии в максимальном размере Дв = 0,5*(1-0,5) = 0,25.

Предыдущая лекция... Следующая лекция...

Вернуться к оглавлению

Позиции клиентов

Последние разработки

  • Разработка сайта услуг
  • Редизайн сайта эвакуации
  • Редизайн сайта доставки суши